Thứ Hai, 21 tháng 12, 2015

VỀ MỘT LỚP CON CÁC MD5-ĐẠI SỐ VÀ PHÂN LÁ TẠO BỞI CÁC K-QUỸ ĐẠO CHIỀU CỰC ĐẠI

LUẬN VĂN THẠC SĨ TOÁN HỌC: VỀ MỘT LỚP CON CÁC MD5-ĐẠI SỐ VÀ PHÂN LÁ TẠO BỞI CÁC K-QUỸ ĐẠO CHIỀU CỰC ĐẠI CỦA CÁC MD5-NHÓM LIÊN THÔNG TƯƠNG ỨNG


Dương Minh Thành

Chuyên ngành: Hình học và Tôpô

Mã số: 60 46 10


MỞ ĐẦU
Lý thuyết biểu diễn là một trong những lĩnh vực quan trọng, đóng vai trò cốt yếu trong nhiều hướng nghiên cứu của toán học và vật lý học hiện đại: Giải tích điều hòa trừu tượng, lý thuyết số, nhóm đại số, cơ học lượng tử, vật lý hạt cơ bản, lý thuyết trường lượng tử, hình học đại số, nhóm lượng tử, … Một cách tự nhiên, bài toán quan trọng nhất của lý thuyết biểu diễn chính là bài toán phân loại biểu diễn hay còn gọi là bài toán về đối ngẫu unita. Tức là cho trước một nhóm G, hãy phân loại tất cả các biểu diễn unita bất khả quy của G (sai khác một đẳng cấu).
Đối tượng quan trọng của lý thuyết biểu diễn chính là nhóm Lie và đại số Lie. Nghiên cứu và phân loại biểu diễn của nhóm Lie và đại số Lie cho ta những thông tin về chính nhóm đó và của các đại số nhóm tương ứng. Để giải quyết bài toán này, A. A. Kirillov (xem [Ki]) Đã phát minh ra phương pháp quỹ đạo và nhanh chóng trở thành một công cụ đắc lực của lý thuyết biểu diễn. Phương pháp này cho phép ta nhận được tất cả các biểu diễn unita bất khả quy của mỗi nhóm Lie liên thông, đơn liên, giải được từ các K-quỹ đạo nguyên của nó. Trong khoảng thập niên 60 và 70 của thế kỷ trước, phương pháp quỹ đạo Kirillov được nhiều nhà toán học trên thế giới như L. Auslander, B. Kostant, Đỗ Ngọc Diệp, … nghiên cứu, cải tiến, mở rộng và áp dụng trong lý thuyết biểu diễn nhóm Lie.
Đóng vai trò then chốt trong phương pháp quỹ đạo Kirillov chính là các Kquỹ đạo của biểu diễn đối phụ hợp (hay còn gọi là K-biểu diễn). Do đó, việc mô tả các K-quỹ đạo của mỗi nhóm Lie, nhất là các nhóm Lie liên thông giải được, có ý nghĩa quan trọng trong lý thuyết biểu diễn nhóm Lie.


Không có nhận xét nào:

Đăng nhận xét